In the sixth article of this series, Constructing Our Niches: The Ultimate/Proximate Relationship Relative to Codes and Standards, I discussed the relationship between ultimate design features and their proximate manifestations relative to the standards and codes used within the building/construction industry. Ideally, codes and standards are developed, implemented, and enforced in such a manner to establish normalized expectations of safety and performance, while also building in enough flexibility to better ensure that local level proximate manifestations are aligned with ultimate needs. For those interested, the first five articles in the series can be found through the following links:

This essay represents the culmination of the series, and it focuses on taking a building project from early planning all the way through its initial occupancy, and beyond. Specifically, I’m looking at how we create an overall process, rooted in an evolutionary framework, that forms a cohesive group of stakeholders bound in the common pursuit of determining the relevant ultimate design features and their proximate manifestations.

In the third essay, I discussed the process of integrated design, laying out a few reasons why it ends up being successful or not relative to two of Elinor Ostrom’s (1990; Wilson et al. 2011, 2013) ultimate design features necessary for effective cooperation among group members. Looking at Ostrom’s fourth ultimate design feature – low-cost monitoring, so that lapses of cooperation can be easily detected – I discussed how the owner’s project requirements (OPR) document “… holds everyone accountable to the project’s vision and goals throughout the design/construction process.” It does this by providing “… transparency (e.g. Wilson et al. 2011, 2013) of 1) the nature of the project’s vision and goals, 2) design or construction changes that impact the vision and goals, 3) who instigated the changes, and 4) why the changes were made and what impacts they’re estimated to have.”                                

When successful, the integrated design process has engaged all the relevant key stakeholders of a project. This helps satisfy Ostrom’s first design feature – a strong group identity, including understanding and agreeing with the group’s purpose. “Bringing the key stakeholders together early on in the process, from the architect and contractor, to building owner and facility manager, and to the occupants themselves, is critical for establishing buy-in of the project vision, scope, and goals, as well as binding the group together in pursuit of these common goals.” The building/construction industry, however, doesn’t consistently engage all the key stakeholders to determine everyone’s values and needs, even in applications of integrated design. This often contributes to varying degrees of misalignment between ultimate design features and their proximate manifestations, many examples of which have been provided throughout this series of essays. If the industry deliberately operated within an evolutionary framework, then additional significance would be associated with engaging every relevant key stakeholder group. Designers would more consistently distinguish between ultimate needs and proximate manifestations and consider how evolutionary forces operating at multiple levels both shape and are constrained by the nature of this ultimate/proximate relationship.

Cases of thermal discomfort misalignment, several examples of which were discussed in previous essays, are often contributed to by inadequately involving certain key stakeholder groups, such as students or women, in the planning, design, or post-occupancy assessments. Maybe students aren’t included on planning committees or given the opportunity to provide feedback. Maybe the core design/construction team and owner/organizational representatives include few or no women, limiting the inclusion of their perspective as design decisions are being made. As a result, some relevant ultimate needs or required proximate manifestations to meet those needs are missed. And the particular history of HVAC in North America, discussed in the second essay, has increased the likelihood that thermal discomfort misalignments will occur.

While this is an oversimplification (see the second essay for more details), the industry’s eventual standardization on forced air HVAC systems as the dominant system type, driven in part through the particular unfolding of HVAC’s development in North America, increased the uniformity within manufacturers, designers, builders and business owners. Even though forced air systems aren’t the most optimal for achieving occupant thermal comfort, the uniformity obtained via standardization provided a selective advantage in and of itself to these organizations, the building/construction industry, and society at large. In the absence of a design decisionmaking process that quantified estimates of occupant productivity and health (and therefore those impacts at both the higher group level and the individual CEO or shareholder), uniformity at the higher group level dominated thermal comfort needs at the lower occupant level. Historically, this has contributed to an increased likelihood of thermal discomfort.

As with integrated design, shortcomings are also found in Human-Centered Design (HCD) approaches. Human-Centered Design is both a framework for viewing the design process, as well as a set of methodologies for carrying out design. As a framework, it places human end users, and their interactions with the environment, systems or product in question, at the center of the design. The methodologies employed are intended to determine the contextual user (and organizational) needs and abilities, so that the capabilities of the physical environment, systems, technology, or product in question are designed to be in alignment with the determined user needs and abilities. Many of the methodologies employed are similar to what you would find in an integrated design process and include charrettes, ethnography, surveys, modeling, design iterations, and reviewing secondary research results on cognitive impacts, social interactions, organizational operations, and other building/occupant interaction findings. It’s a process grounded in the relevant information about the people who will be using the buildings, systems or products being designed.

It’s that heavy focus on the contextual needs of the end user or occupant consistently gathered in part through ethnographic methods, that set it apart from other design frameworks and methods used in the building/construction industry. It can be particularly effective at identifying needs of the occupant and their organizations, as well as the optimal proximate manifestations, but it doesn’t view their relationships from an evolutionary perspective. Until HCD operates specifically within an evolutionary framework systematically distinguishing between ultimate needs and proximate manifestations, it will never reach its full potential either.

What’s needed is a process operating within an evolutionary framework that combines key aspects of integrated design and HCD. To form a cohesive group of stakeholders bound in the common pursuit of a project’s goal’s, it’s particularly important that the process address the Collaboration (Ostrom’s design features) and Competition ultimate design features discussed in the fifth essay. In general, the following four general tasks are what I see should be incorporated.

1) Identify Key Stakeholders: From the earliest phases of a project, identify all the relevant key stakeholder groups. These include the financers, designers, contractors, commissioning agents, other specialty consultants, facility operators, the organizational/occupant groups, authorities having jurisdiction (AHJs), and potentially community groups. Including all relevant groups helps ensure that the various needs are accounted for, that the most optimal proximate solutions are generated, that everyone’s voice is heard, and that buy-in for the final solution is obtained. It’s the first step to meeting Ostrom’s first, second, third and seventh ultimate design features, as well as the design features of Functional Integration and Uniformity. Here are some of the ways that they are relevant.

  • Strong group identity (Ostrom Feature 1): This includes understanding and agreeing with the group’s purpose. For example, identifying all the relevant key stakeholders early makes it more likely the overall group will solidify around an agreed-to vision and set of goals than if some stakeholders are brought on board later in the process.
  • Benefits proportional to costs (Ostrom Feature 2): It’s important that the work doesn’t fall unfairly on some individuals and unearned benefits on others. For example, relevant to the design/construction team and building owner, it’s important that from the very beginning, expectations regarding different team member scopes of work, schedules, and associated fees are clearly articulated and agreed to by everyone. If the contract holder expects more effort for a given fee than understood by those being contracted, working relationships, and ultimately the success of the project, could be negatively impacted.
  • Consensus decision-making (Ostrom Feature 3): Most people dislike being told what to do but will work hard to achieve their own goals. For example, stakeholders brought on board later in the process may not be vested in the vision and goals that were already established and may actively work to undermine them. Stakeholders that were never brought on board, or feel they’ve had no input in the decisions made, likely won’t have any buy-in of the final solution.
  • Sufficient autonomy (Ostrom Feature 7): Sufficient autonomy is needed for the group to make its own decisions without interference from other groups. For example, in some circumstances, the involvement of certain key stakeholders early on could ensure that this collective team of stakeholders has the autonomy needed to make needed decisions. In the Wilder Block building example from the last essay, the involvement of the AHJ (local fire safety officials) in the design process allowed the development of a solution deemed code compliant, as opposed to being presented the design after the fact, and potentially “interfering” with design decisions already made.
  • Functional Integration: A group needs to be composed of functionally differentiated individuals, or individuals performing the different functions required for the group to successfully and competitively operate. For example, the more effort expended on identifying and including the relevant key stakeholders early, the more likely that the relevant functions necessary for successful completion of the project, such as all the necessary design specialties, will be included.
  • Uniformity: Successful operations, functional integration, and cooperation of group members are greatly enhanced by imposing uniformity upon these members relative to their behavior. For example, early identification of the relevant key stakeholders and their involvement in establishing schedules, budgets, scopes of work, communication protocols, etc., helps ensure a degree of uniformity among the key stakeholders involved relative to the completion of the project.

2) Establish Vision and Goals: As a group, establish an agreed-to vision and set of goals for the project in question. These are subsequently used to guide the establishment of project requirements, performance targets, design concepts, building operational policies, etc., as well as provide something at a high level to hold everyone accountable to throughout the process. Methods used to facilitate this often include some type of charrette, workshop, or visioning session, sometimes supplemented with surveys and ethnography (e.g., Harmon 2012). These are performed to uncover relevant values and desired outcomes, how they vary among the key stakeholders, look for commonalities and reconcile any major differences to finalize on a vision and set of goals. Ostrom’s first and third ultimate design features, as well as the design feature of Uniformity, are particularly relevant.

  • Strong group identity (Ostrom Feature 1): This includes understanding and agreeing with the group’s purpose. For example, establishing a vision and set of goals as a group, that everyone is generally in agreement with, increases the strength of the group’s overall identity relative to the completion of the project.
  • Consensus decision-making (Ostrom Feature 3): Most people dislike being told what to do but will work hard to achieve their own goals. For example, establishing the vision and goals through a form of consensus decision-making will help ensure that they’re adhered to throughout the process and that key stakeholders will buy-in to the final solution.
  • Uniformity: Successful operations, functional integration, and cooperation of group members are greatly enhanced by imposing uniformity upon these members relative to their behavior. For example, an agreed-to vision and set of goals help unify the overall project group throughout the process as the group seeks to complete the project within the constraints of the vision and goals.

Ideally the vision and set of goals should be “prosocial” as opposed to “selfish” with respect to the overall organization, community, and society. From an evolutionary perspective this means that we want to develop a vision and set of goals for the project that benefit the group, and that also don’t benefit specific individuals in the short term at the expense of the larger group over the long-term (i.e., generate profits to sustainably accomplish a shared vision vs. having a vision focused solely on generating profits primarily for the leaders and shareholders).

Research, including my own, suggests that “… the more people involved in a decision-making process (even indirectly), the less likely short-term, localized costs/benefits will dominate the process at the expense of longer term, much broader formulations of costs/benefits” (Harmon 2016). For the design/construction process, encouraging decision makers to be more inclusive and transparent, soliciting the opinions of employees, partners, patrons, community members, etc., will increase the likelihood that visions and goals will be more prosocial in nature. Early identification and inclusion of all the relevant key stakeholders help ensure this.

3) Determine Ultimate Features/Needs & Proximate Solutions: Obtain an understanding of the relevant key stakeholder group ultimate features, or needs, with respect to the project’s vision and goals, and then determine the best proximate solutions of the ultimate design features identified. As I pointed out in the third essay, this requires obtaining an understanding of the following three items, graphically depicted here.

  1. How the physiological and psychological constraints that result from our evolutionary history, in turn, have shaped our individual and group needs, behaviors and decision making in various modern group settings (e.g., Halpern et al. 2010; Henrich 2016).
  2. How our evolutionary history spent primarily as hunter/gatherers has shaped the social/cultural tools we have available for living and interacting in group settings (e.g., Henrich 2016; Wilson 2015).
  3. How the appropriate proximate manifestations of these ultimate design principles are determined by a) who the specific individuals and groups are (and how they’re nested together) (e.g., Brown et al. 2011; Wilson 2015; Wilson et. al. 2013), b) what their physiological and psychological needs consist of (e.g., Brown et al. 2011; Halpern et al. 2010; Wilson 2015) and c) what their social/cultural and physical environments currently and/or need to consist of (e.g., Brown et al. 2011; Halpern et al. 2010; Wilson 2015).

Six categories of ultimate features, or needs, are discussed in the fifth essay, and these tend to be relevant for most projects. Others may also be relevant depending on the demographics of the key stakeholders involved, the facility type (or organization’s mission), and scope of work. Some ethnographic work (e.g., Harmon 2012) to better understand those being designed for combined with secondary research (similar to what was used in the fifth essay) may be needed to determine the most appropriate ultimate features, or needs, for a given project.

Once these are determined, then they, along with the vision and set of goals, can be used to establish the performance targets (relative to occupant comfort and health, indoor environmental quality (IEQ) conditions, energy consumption, utility costs, work order rates, etc.) and other owner project requirements. These provide the general constraints used to work within while formulating the proximate design solution options to consider.

To determine the most appropriate proximate design solutions, there are many methods and tools to pull from traditional, integrated and HCD approaches for use in conjunction with one another. These include (but aren’t limited to):

  • More in-depth engagement of building occupants, building operators and potentially community members through surveys and ethnographic methods (e.g., Harmon 2012). This effort may be accomplished at the same time such engagement is performed for establishing the vision and goals, as well as the relevant ultimate design needs/features. Or it may be an additional effort.
  • Secondary research examining previous design solution applications and their resulting performance.
  • A series of design iterations at various scales throughout the design process – internal to an individual firm’s project team, involving the whole design/construction team, and the entire key stakeholder group. Within this iterative design process, occupant group representatives, organizational leadership, building operators, and potentially community members depending on the project, should participate in developing design concepts as well as providing feedback on the design as it progresses.
  • Virtual reality and/or physical mockups can be used as part of the iterative design process to help key stakeholders more fully experience different options for proximate design solutions and provide informative feedback. These are both powerful methods for providing “contextual” feedback and uncovering unintended cases of misalignment for a physical environmental “context” that doesn’t exist yet.
  • Modeling to predict performance (energy, comfort, etc.) of design concept options using various software packages. This modeling should involve some form of life cycle cost analysis that takes a comprehensive look at costs and benefits (e.g., Harmon 2016), including such things as quantitative estimates of impacts on occupant productivity/performance and health, operational costs relative to potential work orders and systems maintenance, and even larger community, environmental and societal impacts, such as greenhouse gas emissions.

Ostrom’s first, second, third, sixth, and eighth ultimate design features, as well as the design feature of Functional Integration, are particularly relevant.

  • Strong group identity (Ostrom Feature 1): This includes understanding and agreeing with the group’s purpose. For example, engaging the building occupants and building operators as part of the iterative design process, elevating them to the status of a designer in a manner of speaking, increases the strength of the group’s identity around a common set of project goals.
  • Benefits proportional to costs (Ostrom Feature 2): It’s important that the work doesn’t fall unfairly on some individuals and unearned benefits on others. For example, making the building occupants, building operators, organizational leadership and other relevant key stakeholders active participants in the design process helps ensure a proximate outcome that meets the most optimal combination of the relevant stakeholder’s ultimate needs. We don’t want an outcome where some stakeholders appear to benefit at the expense of others.
  • Consensus decision-making (Ostrom Feature 3): Most people dislike being told what to do but will work hard to achieve their own goals. For example, making non-design/construction team members an active part of the design, part of the decision-making process, better ensures needs are met, alignment is achieved, and buy-in is obtained.
  • Conflict resolution (Ostrom Feature 6): This should be fast and perceived as fair by group members. For example, as the design process proceeds, various conflicts will arise relative to needs, wants, and costs. There will be disagreements among stakeholder groups and individuals relative to the selection of certain proximate design concepts and the exclusion of others. It’s rare that anyone gets everything they want, but people should feel their concerns and desires were heard and thoughtfully considered. This is required for the process to be perceived as fair.
  • Scalable Relations (Ostrom Feature 8): The relations among groups should embody the same features as the relations among individuals within the group. For example, it’s important that implementation of processes to address these ultimate design features at the level of the whole key stakeholder group is also reflected at the level of the design/construction team. Unsuccessfully addressing these ultimate design features among the design/construction team members will negatively impact the ability of the larger key stakeholder group to collaborate in common pursuit of the project goals.
  • Functional Integration: A group needs to be composed of functionally differentiated individuals, or individuals performing the different functions required for the group to successfully and competitively operate. For example, if the necessary specialty consultants haven’t all been engaged for a specific project, such as an acoustician, anthropologist, envelope commissioning agent, etc., then all the tasks needed to formulate a proximate design aligned with goals, performance targets and other requirements won’t be effectively performed or performed at all.

4) Maintain Accountability: Methods and tools are required for helping ensure that the prosocial vision, goals, performance targets, and other owner project requirements are adhered to throughout the process, from initial planning until years after initial occupancy. This requires keeping the group cohesive and focused on the same goals, as well as verifying that the facility has been constructed to, and performs to, the original design intent. As with the previous step, there are many methods and tools to pull from traditional, integrated and HCD approaches for use in conjunction with one another to achieve this. A few of these that aren’t always consistently included are:

  • In general, it’s important to keep key stakeholders engaged throughout the process. This needs to occur throughout at least the first year of occupancy (through the warranty phase). While it’s true that most groups will not have the same level of involvement through this timeframe (i.e., subcontractors may be more heavily involved during construction than during design), the transparency provided by keeping everyone generally engaged helps the project adhere to the original goals. One of the benefits of project delivery methods like Construction Manager at Risk (CMAR) is that they ensure contractors are involved earlier in the process.
  • Above and in the third essay I discussed how the owner’s project requirements (OPR) document holds everyone involved accountable to the project’s vision, goals, performance targets and other requirements throughout the design/construction process, in part because of its ability to maintain transparency.
  • The modeling process discussed in the previous step, combined with the virtual reality and physical mockups, provide indications of how potential design solutions may or may not meet performance targets and other owner requirements. It’s important that the results of these actions are transparent to the key stakeholder group as a whole.
  • Commissioning provides a comprehensive process to ensure that systems are designed with the operator in mind and installed/constructed and initially performing per design intent. In addition, commissioning agents often work with building owners and operators to implement processes and tools that help ensure the building is operated per the design intent for the long term, including after eventual turnover of building operating personnel. However, while the occupant’s perspective is typically considered in the commissioning process, there tends to be more of a focus on the building operator. Adding a more deliberate consideration of the occupant during the commissioning process would increase the effectiveness of commissioning (Harmon 2011a, 2011b).
  • After one year of occupancy, a comprehensive post-occupancy evaluation (POE) is needed to ensure that the facility is still performing per the original goals, performant targets and other requirements. If cases of misalignment are found, adjustments should be made to bring them into alignment and lessons learned should be carried forward to other projects, shared with the industry, and used to evolve the process itself. A comprehensive POE process includes engagement of building occupants through surveys and ethnography, measurements of IEQ conditions, estimated impacts on productivity and health, assessments of building energy and water consumption, utility and other operational costs, and potentially other building audit or retro-commissioning
  • Similar assessments, recommissioning, or even continuous or ongoing commissioning, should occur throughout the life of the facility, to keep ultimate needs in alignment with the proximate manifestations. But it’s important to recognize that as building occupants or even organizations change over time, the relevant ultimate needs could also change.

Ostrom’s first, second, fourth, fifth, and sixth ultimate design features, as well as the design feature of Uniformity, are particularly relevant.

  • Strong group identity (Ostrom Feature 1): This includes understanding and agreeing with the group’s purpose. For example, a group with a strong identity focused on the pursuit of the project’s goals is easier to hold accountable for meeting those goals.
  • Benefits proportional to costs (Ostrom Feature 2): It’s important that the work doesn’t fall unfairly on some individuals and unearned benefits on others. For example, the OPR document, if formed through a consensus decision-making process involving the relevant stakeholders, establishes requirements for the subsequent design that limits some stakeholders benefiting at the expense of others.
  • Low-cost monitoring (Ostrom Feature 4): This is needed to easily detect lapses of cooperation. For example, the OPR, the modeling, mockups, and virtual reality, the commissioning testing activities, and POEs are among the many opportunities available to help facilitate monitoring deliberate or accidental lapses of cooperation.
  • Graduated sanctions (Ostrom Feature 5): This is needed to correct misbehaviors, which begin as friendly reminders and escalate only as needed. For example, these friendly reminders are often manifested in group collaborations of some sort (meetings or otherwise), where someone simply points out that some decision, design choice, etc., doesn’t meet some aspect of the OPR, or is anticipated to not meet a performance target. Worse case scenarios could escalate up to termination from a project, or litigation.
  • Conflict resolution (Ostrom Feature 6): This should be fast and perceived as fair by group members. This is similar to the example discussed in the third step.
  • Uniformity: Successful operations, functional integration and cooperation of group members are greatly enhanced by imposing uniformity upon these members relative to their behavior. Effectively implementing accountability measures will improve or at least help maintain the uniformity among the key stakeholders with respect to achieving the project’s goals.

This high-level outline can be implemented on projects in a variety of ways. The scale of its implementation will certainly vary by project type and scope of work, but the ideas laid out in each of these four general tasks need to be systematically addressed on each project in some manner. In many ways, it’s about creating an evolutionary based, human-centered mindset of engaging the necessary stakeholders to align proximate design solutions with their relevant ultimate needs.

M.E. GROUP has developed its own HCD framework that follows the outline above. We call it the DIVE Project Framework™. It spans from pre-design through post-construction services (and beyond), and is broken down into the four phases of Discovery, Iteration, Validation, and Evolution. As of early May 2018, we’ve implemented elements of it on some of our projects to gather feedback and fine tune certain aspects. We’re rolling out company-wide internal training on the framework starting mid-May 2018, with a more deliberate push for day-to-day implementation of the framework by the end of July 2018.

We believe that this will ultimately minimize the occurrences of misalignment (and the degree of their severity) by proactively taking the nature of the relevant ultimate and proximate design features into account. And that it will contribute to the design, construction and operations of more sustainable and regenerative built environments that better meet the productivity and health needs of building occupants and organizations, as well as minimize, and even reverse, the built environment’s contributions to climate change. We don’t want to be the puddle in Douglas Adams’ fable, doomed by an overly limited perspective of our environment that blinds us to the nested relationships of a complex world.

References

Brown, G. R., Dickins, T. E., Sear, R. & Laland, K. N. 2011. Evolutionary Accounts of Human Behavioural Diversity. Philosophical Transactions of the Royal Society B, 366: 313–324.

Halpern, D., King, D., Vlaev, I. & Hallsworth, M. 2010. Mindspace: Influencing Behaviour Through Public Policy. Report by the Institute for Government for the Cabinet Office, United Kingdom.

Harmon, M. 2011a. The Commissioning Agent as Anthropologist – Part 1. The Checklist: The Quarterly Newsletter of the Building Commissioning Association, Second Quarter., pp. 8-10.

Harmon, M. 2011b. The Commissioning Agent as Anthropologist – Part 2. The Checklist: The Quarterly Newsletter of the Building Commissioning Association, Third Quarter., pp. 8-11, 16-17.

Harmon, M. 2012. Creating Environments that Promote Efficiency and Sustainability: Anthropological Applications in the Building/Construction Industry. Proceedings from the 2012 ACEEE Summer Study on Energy Efficiency in Buildings, pp 7-75 – 7-87.

Harmon, M. J. 2016. If We Say That Nature Is Priceless, Do We End up in Effect Treating It as Valueless? Evonomics, July 18, 2016.

Henrich, J. 2016. The Secret of Our Success: How Culture is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter. Princeton & Oxford, Princeton University Press.

Ostrom, E. 1990. Governing the commons: The evolution of institutions for collective action. Cambridge, Cambridge University Press.

Wilson, D. S. 2015. Does Altruism Exist? Culture, Genes, and the Welfare of Others. New Haven and London: Yale University Press.

Wilson, D.S., Kauffman, Jr, R. A., Purdy, M. S. 2011. A Program for At-Risk High School Students Informed by Evolutionary Science. PLoS ONE, 6(11), e27826.

Wilson, D. S., Ostrom, E., and Cox, M. E. 2013. Generalizing the Core Design Principles for the Efficacy of Groups. Journal of Economic Behavior & Organization, 90, S21–S32.

Published On: May 8, 2018

Marcel J. Harmon

Marcel J. Harmon

Marcel J. Harmon, a licensed professional engineer and anthropologist, received his Ph.D. in Anthropology from the University of New Mexico. He currently co-leads the Research & Development team at BranchPattern, a building consultancy dedicated to improving life through better built environments. The primary mission of the team is to provide a research/evidence-based approach for aligning design intent with occupant and organizational needs. Over the years Marcel’s academic and professional focus have included applications of evolutionary theory to understanding past and contemporary societies and the reciprocal relationships between people and their built environments. In his current role, Marcel leads research projects designed to provide insights relative to specific client questions. He engages building occupants, gathering their stories and personal narratives, to ensure that projects better account for occupant’s wants and needs. He also quantifies the built environment’s impact on occupant productivity/performance and health, as well as the occupant’s impact on building performance. Marcel uses this understanding to inform on the process from early programming through post occupancy evaluations, and encourage longer term, prosocial decision making during the design/construction process.

 

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.